Search results for "Compostos organometàl·lics"

showing 4 items of 4 documents

Improving detection limits for organotin compounds in several matrix water samples by derivatization-headspace-solid-phase microextraction and GC-MS.

2010

Triethyltin, tributyltin, diphenyltin and triphenyltin were selected as model compounds. The method is based on in situ ethylation and simultaneous headspace-solid-phase microextraction (HS-SPME) and gas chromatographic-mass spectrometry analysis (GC-MS). The extraction procedure was optimized studying some variables such as reaction time, salinity, sample volume and headspace volume. SPME-GC-MS and SPME-GC-FID techniques were compared; quality assurance parameters such as sensitivity, selectivity and precision were established. The proposed procedure showed limits of detection between 0.025 and 1 ng/L. The linearity was in the 0.025-5000 ng/L range. The precision expressed as relative stan…

Detection limitCromatografia de gasosChromatographyAnalytical chemistrySolid-phase microextractionAnalytical Chemistrylaw.inventionMatrix (chemical analysis)chemistry.chemical_compoundchemistrylawFlame ionization detectorSample preparationGas chromatographyCompostos organometàl·licsAigües residuals AnàlisiGas chromatography–mass spectrometryDerivatizationTalanta
researchProduct

Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications

2019

A series of proton exchange membranes based on polybenzimidazole (PBI) were prepared using the low cost ionic liquids (ILs) derived from 1-butyl-3-methylimidazolium (BMIM) bearing different anions as conductive fillers in the polymeric matrix with the aim of enhancing the proton conductivity of PBI membranes. The composite membranes prepared by casting method (containing 5 wt. % of IL) exhibited good thermal, dimensional, mechanical, and oxidative stability for fuel cell applications. The effects of anion, temperature on the proton conductivity of phosphoric acid-doped membranes were systematically investigated by electrochemical impedance spectroscopy. The PBI composite membranes containin…

Materials scienceTetrafluoroboratematerials sciencePolymers and PlasticspolymerComposite numberProton exchange membrane fuel cellfuel cellsConductivityArticlelcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryCompostos organometàl·licsPhosphoric acidionic liquidConductivitat elèctricaGeneral ChemistryDielectric spectroscopypolybenzimidazoleelectrochemical impedance spectroscopyMembranechemistryChemical engineeringproton conductivityIonic liquidproton exchange membranePolymers
researchProduct

Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs)

2018

The zeolitic imidazolate frameworks (ZIFs) ZIF-8, ZIF-67, and a Zn/Co bimetallic mixture (ZMix) were synthesized and used as fillers in the preparation of composite sulfonated poly(ether ether ketone) (SPEEK) membranes. The presence of the ZIFs in the polymeric matrix enhanced proton transport relative to that observed for SPEEK or ZIFs alone. The real and imaginary parts of the complex conductivity were obtained by electrochemical impedance spectroscopy (EIS), and the temperature and frequency dependence of the real part of the conductivity were analyzed. The results at different temperatures show that the direct current (dc) conductivity was three orders of magnitude higher for composite …

Materials scienceGeneral Chemical EngineeringComposite numberProton exchange membrane fuel cellEther02 engineering and technologyZeolitic imidazoleate frameworkConductivity010402 general chemistry01 natural sciencesArticlelcsh:ChemistryProton exchange membranechemistry.chemical_compoundSulfonated poly(ether ether ketone)proton conductionProton transportCIENCIA DE LOS MATERIALES E INGENIERIA METALURGICAGeneral Materials ScienceCompostos organometàl·licssulfonated poly(ether ether ketone)021001 nanoscience & nanotechnology0104 chemical sciencesDielectric spectroscopyElectroquímicaMembraneChemical engineeringchemistrylcsh:QD1-999zeolitic imidazoleate frameworkMAQUINAS Y MOTORES TERMICOS0210 nano-technologyZeolitic imidazolate frameworkProton conductionproton exchange membraneNanomaterials
researchProduct

Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity unde…

2018

The preparation and characterization of composite polybenzimidazole (PBI) membranes containing zeolitic imidazolate framework 8 (ZIF-8) and zeolitic imidazolate framework 67 (ZIF-67) is reported. The phosphoric acid doped composite membranes display proton conductivity values that increase with increasing temperatures, maintaining their conductivity under anhydrous conditions. The addition of ZIF to the polymeric matrix enhances proton transport relative to the values observed for PBI and ZIFs alone. For example, the proton conductivity of PBI@ZIF-8 reaches 3.1 10&minus

Proton conductivityMaterials scienceProtonGeneral Chemical EngineeringComposite numberProton exchange membrane fuel cellZeolitic imidazoleate framework02 engineering and technologyConductivity010402 general chemistry01 natural sciencesArticlelcsh:ChemistryProton exchange membranechemistry.chemical_compoundCIENCIA DE LOS MATERIALES E INGENIERIA METALURGICAProton transportGeneral Materials ScienceCompostos organometàl·licsPhosphoric acidConductivitat elèctrica021001 nanoscience & nanotechnologyPolybenzimidazole0104 chemical sciencespolybenzimidazoleMembranelcsh:QD1-999Chemical engineeringchemistryproton conductivityMAQUINAS Y MOTORES TERMICOSzeolitic imidazolate framework0210 nano-technologyproton exchange membraneZeolitic imidazolate frameworkNanomaterials
researchProduct